Journal of Organometallic Chemistry. 81(1975) 145-150 0 **Eisevier-S'equoia S.A., Lausanne - Printed in The Netherlands**

THE CRYSTAL AND MOLECULAR STRUCTURE OF TRIPHENYLSILICON **ISOTHIOCYANATE**

G.M. SHELDRICK and R. TAYLOR

University Chemical Laboratory, Lensfield Road. Cambn'dge CB2 1 **EU'** *(Great Britain)* **(Received September 24th. 1974)**

Summary

The structure of Ph₃SiNCS has been determined by single crystal X-ray diffraction, and refined to $R = 0.055$ for 2841 diffractometer data. The crystals are monoclinic, $P2_1/c$, with $a = 9.402(8)$, $b = 18.735(16)$, $c = 11.350(9)$ $A, \beta = 118.98(2)^\circ$, and $Z = 4$. The structure consists of isolated molecules, with one molecule in the asymmetric unit. Some mean bond lengths and angles are: Si-N, 1.735(5); Si-C, 1.851(4); N-C, 1.156(4); C-S, 1.562(4); C-C, 1.381(8) \land ; C-Si-N, 106.3(8); C-Si-C, 112.4(6); Si-N-C, 170.7(2); and N-C-S, $178.9(3)$ ^o.

Introduction

As part of our study of the molecular structures of silyl and organotin pseudohalides by X-ray and electron diffraction, we have determined the crystal structure of triphenylsilyl isothiocyanate. The crystal structures of the trimethyltin [l] and triphenyltin [21 analogues can be considered to be intermediate between structures based on tetrahedrally coordinated tin (NC,) and on trigonal bipyramidal coordination (NC₃S), the extra $Sn - S$ interactions giving rise to $=S \cdot \cdot \cdot Sn-N=C=S \cdot \cdot \cdot Sn-$ chains bent only at sulphur. The triphenyltin derivative is closer to idealised five coordination geometry, with Sn-N, 2,22(5); Sn \cdots S, 2.92(1) Å and C-Sn-N, 91.7(1.3)°. In contrast, in the structure reported here we find isolated $Ph₃$ SiNCS molecules, with no short $Si \cdot$ -S interactions.

Experimental

Preparation

Ph₃SiBr was prepared by titrating bromine with Ph₃SiH in carbon tetra-chloride; after removal of HBr, excess bromine and solvent, the product was

dissolved in Na-dried benzene, excess dry AgNCS added, and the mixture refluxed **under nitrogen. We find that this is a very convenient procedure for preparing sibyl derivatives uncontaminated by hydrolysis products. Colour**less crystals were obtained by slow evaporation of the benzene solution, and mounted in Lindemann glass capillary tubes.

Data collection

Intensities were determined on a Stoe Stadi-2 two-circle diffractometer (layers 0 kl to $9k$ l and $h0$ l to $h23$ l inclusive) with $Mo-K_{\alpha}$ radiation (λ 0.71069 Å) and graphite crystal monochromator, from two crystals of approximate dimen**sions** 0.20X 0.19X 0.14 mm and 023X 0.52X 0.44 mm respectively. The data were collected in an approximately 'constant count' mode; where a prescan **'Indicated that the count could not be achieved within a** specified time, the reflexion was ignored. A stationary background $-$ omega scan $-$ stationary background technique was employed, with variable reflexion width, and with the background measurement time proportional to the step measurement time. A total of 6876 reflexions was measured, of which 692 were rejected because the net count was less than 30 **based on counting statistics, because of back**ground imbalance, or because of peak centering errors. Lorentz, polarisation and absorption corrections were applied, and interlayer scale factors obtained by a linear least-squares analysis of common reflexions; averaging equivalent reflexions led to 2841 unique observed reflexions. Unit cell dimensions were obtained by a least-squares fit to the median omega values for $319 \text{ h}0$ and *Okf* reflexions.

Clystal data

 $C_{19}H_{15}$ SiNS, mol. wt. 317.5, monoclinic, $a = 9.402(8)$, $b = 18.735(16)$, $c =$ 11.350(9) \AA , $\beta = 118.98(2)^\circ$, $U = 1749 \text{ Å}^3$, μ (Mo- K_α) 2.08 cm⁻¹, d_c 1.21 g cm⁻³ for $Z = 4$. Systematic absences: $0k0 \, k \neq 2n$; $h0l$, $l \neq 2n$. These uniquely determine the space group as $P2₁/c$. All the atoms occupy four-fold general pc.sitions of the set $\pm (x, y, z; x, \frac{1}{2} - y, \frac{1}{2} + z)$; the asymmetric unit is one formula unit.

Structure solution and refinement

The **structure was** solved by multisolution sigma-2 refinement, all 22 non-hydrogen atoms being located in the best E -map. The structure was refined by full-matrix least-squares with the final weighting scheme $w = \Sigma[\sigma^2(N)]$ + 0.001 N^2] ⁻¹/[2.81 + IF₀| + 0.00991 F₀²], where N is the net peak count, and the summation is over equivalent reflexions. The hydrogen atoms were constrained to lie on the external bisectors of the CCC angles, with C-H 1.08 A. In the final cycles a total of 215 parameters were varied independently, including isotropic temperature factors for the hydrogen atoms, anisotropic temperature factors for the remaining atoms, and a secondary extinction coefficient which refined to the value $10^5 Q_0 r^* 4(2)$ cm⁻¹ [3]. A bonded hydrogen atom scattering factor was employed $\overline{[4]}$, with complex neutral atom scattering factors for the remaining atoms [5,6]. The refinement converged to R_{μ} (= $\sum \omega^{1/2} \cdot |F_{\rm o}-F_{\rm c}|/\sum \omega^{1/2} \cdot |F_{\rm o}|$) 0.064 with a corresponding unweighted index R 0.055. The final difference electron density synthesis had no peaks

TABLE 1 ATOM COORDINATES (X10⁴)

TABLE 2

ANISOTROPIC VIBRATIONAL AMPLITUDES (A^2 X 10³)^{*a*}

a The temperature factor exponent takes the form: -2π $(U_{11} h^2 a^{-2} + U_{22} k^2 b^{-2} + U_{33} l^2 c^{-2} +$ **2U23** *k 1 b* C* + 2U13 h 1 o*c' +* **2U12** *h k o*b*).*

 $-520(4)$

 $1712(3)$

2097 (3)

 $2254(3)$

4576 (3)

5778 (5)

4576 (3)

 $2260(3)$

 $944(2)$

 $1204(2)$

 $2316(1)$

3604 (2)

 $4007(2)$

4458 (2)

 $4584(2)$

 $4142(2)$

 $104(10)$

 $113(11)$

87 (9)

116 (11)

127 (12)

114 (11)

85(9)

 $97(10)$

TABLE 4

 $H(24)$

H (25)

H (26)

H (32)

H (33)

H (34)

H (35)

H (35)

BOND LENGTHS (A)

 $262(4)$

 $2554(4)$

4095 (3)

 $2664(3)$

3812 (4)

6610(4)

8186(4)

7073 (3)

TABLE 5

BOND ANGLES (°)

TABLE 3

TABLE 6

SELECTED INTRAMOLECULAR NON-BONDED DISTANCES (Å)

H (15)—H (34)	2.630	$Si(1)$ $-$ C (36)	2.834	
$N(1)$ $-$ H (16)	2.701	$S_1(1)$ – C (16)	2.837	
$N(1) - S(1)$	2.718	$Si(1)$ – C(26)	2.841	
C (11)—H (36)	2.797	$N(1)$ – C (11)	2.862	
N (1)—H (22)	2.800	$N(1)$ – C(21)	2.862	
$Si(1)$ -C (12)	2.818	$Si(1)$ – C(1)	2.882	
Si (1)–C (32)	2.825	$N(1)$ $ C(31)$	2.887	
Si (1)—C (22)	2.829			

TABLE 7

SELECTED INTERMOLECULAR NON-BONDED DISTANCES (Å)

above 0.5 e Å^{-3}. The results of the final least-squares cycle are given in Tables 1-3, with the resulting interatomic distances and angles in Tables 4-7. Figure 1 shows the molecular geometry, and Fig. 2 the packing of the molecules. Lists of observed and calculated structure factors may be obtained from the authors.

Fig. 1. The molecule of Ph₃SiNCS.

Fig. 2. One unit cell of Ph₃SiNCS, illustrating the molecular packing.

Discussion

The triphenylsilyl group adopts the propeller conformation found in other triphenylsilyl derivatives; the $C-Si-C$ angles are all a little greater than the tetrahedral angle, **and the N-Si-C angles a little iess, presumably a consequence of H-** - -H **repulsions** between the ortho hydrogen atoms. There is little difference in the Si-C(Fh) bond lengths reported for triphenylsilyl derivatives; Ph,SiNCS, 1.851(4); Ph₃SiC(O)Me, 1.864(8) [7]; Ph₃SiC(N₂)Ph, 1.865(16) [8]; Ph₃SiC(H)- $(Ph)OC(O)C₆H₄Br, 1.86(1)$ [9] and Ph₃Si, 1.872(7) A [10]. The small increase along this series is consistent with the decrease in electronegativity of the fourth substituent.

Electron diffraction investigations of $H₃$ SiNCS in the vapour phase [11] indicate that this molecule has a potential energy minimum at the linear conformation of the $Si-N-C-S$ chain, but with a low frequency large amplitude Si-N-C bending vibration; very little energy would be required to change the $Si-N-C$ angle. Thus the $Si-N-C$ angle of $170.7(2)^\circ$ found here is not incon**sistent with a linear potential** energy minimum for this molecule also: using the potential function derived for \tilde{H} , SiNCS, about 0.9 kJ mol⁻¹ would be required for a 10" deformation; this could easily be accomodated in minimising the crystal packing energy. The C-S lengths are similar in H_3 SiNCS [1.563(6)] and Ph $_3$ SiNCS [1.562(4) λ 1, but there are significant differences in the N-C]1.197(7) and **l-156(4) A] and Si-N distances [l-704(6) and l-735(5) A re**spectively]; this may be caused by $N \cdot \cdot \cdot H$ repulsions.

Acknowledgements

We are grateful to the Science Research Council for the provision of the diffractometer, and for a maintenance grant to R.T. The calculations were performed on the Cambridge University IBM 370/165 computer using programs written by G&IS.; the plots were produced using the program PLUTO written by Dr. S. **Motherwell.**

References

- **1 R.A.** Forder and **G.M. Sheldnck. J. Org;uromeLal. Chem** . **21 (1970) 115.**
- **2 A.M. Dommgos and G.hl. Sheldrick. J. Organomelal. Chem.. 67 (1974) 257.**
- 3 A.C. Larson, *in F.R. Ahmed (Ed.)*, Crystallographic Computing, Munksgaard, Copenbagen, 1970.
- **4 R.F. Srewart. E.R. Davidson and W.T. Simpson. J. Chem. Phys.. 42 (1965) 3175.**
- **5 D.T. Cromer aod J.B. Maon. Acta Crystallogr. Part A. 24 (1968) 321.**
- **6 D.T. Cromer and D. Liherman. J. Cbem. Phys.. 53 (1970) 1891.**
- **7 P.C. Chieh sod J. Trotter. J. Chem. Sot. A. (1969) 1778.**
- **8 C. Gbdew?LI and GM. Sheldrick. J. Chem. Sot. Dalton. (1972) 2409.**
- 9 K.T. Black and H. Hope, J. Amer. Chem. Soc., 93 (1971) 3053.
- **10 C. Gbdewell and G.M. Sbeldrick. J. Chem. Sot. A. (1971) 3127.**
- **11 C. Glidewell. A.G. Roblette an?l GM. Sheldrick. Chem. Phys. Lett.. 16 (1972) 526.**